Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from Yellow Sea.

نویسندگان

  • Yun-Hua Hou
  • Tian-Hong Wang
  • Hao Long
  • Hui-Yuan Zhu
چکیده

A novel cold-adaptive xylanolytic Penicillium strain FS010 was isolated from Yellow sea sediments. The marine fungus grew well from 4 to 20 degrees; a lower (0 degrees) or higher (37 degrees) temperature limits its growth. The strain was identified as Penicillium chrysogenum. Compared with mesophilic P. chrysogenum, the cold-adaptive fungus secreted the cold-active xylanase (XYL) showing high hydrolytic activities at low temperature (2-15 degrees) and high sensitivity to high temperature (>50 degrees). The XYL gene was isolated from the cold-adaptive P. chrysogenum FS010 and designated as xyl. The deduced amino acid sequence of the protein encoded by xyl showed high homology with the sequence of glycoside hydrolase family 10. The gene was subcloned into an expression vector pGEX-4T-1 and the encoded protein was overexpressed as a fusion protein with glutathione-S-transferase in Escherichia coli BL21. The expression product was purified and subjected to enzymatic characterization. The optimal temperature and pH for recombinant XYL was 25 degrees and 5.5, respectively. Recombinant XYL showed nearly 80% of its maximal activity at 4 degrees and was active in the pH range 3.0-9.5.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Novel Alkali-thermo-tolerant Cellulase-poor Xylanases from Coprinopsis Cinerea Hk-1 Nfcci-2032

Culture conditions of a newly isolated basidiomycetous strain were optimized for the enhanced production of extracellular alkali-thermotolerant cellulase-poor xylanase using wheat bran as the sole carbon source under solid state fermentation (SSF). SEM and ITS sequencing confirmed it as Coprinopsis cinerea HK-1 NFCCI-2032. Among various inexpensive agro-residues, wheat bran (carbon source) came...

متن کامل

Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads

The present study reports the production of high-level cellulase-free xylanase from Penicillium citrinum isolate HZN13. The variability in xylanase titers was assessed under both solid-state (SSF) and submerged (SmF) fermentation. SSF was initially optimized with different agro-waste residues, among them sweet sorghum bagasse was found to be the best substrate that favored maximum xylanase prod...

متن کامل

UV mutagenesis for the overproduction of xylanase from Bacillus mojavensis PTCC 1723 and optimization of the production condition

Objective(s):[p1]  This study highlights xylanase overproduction from Bacillus mojavensis via UV mutagenesis and optimization of the production process. Materials and Methods:Bacillus mojavenis PTCC 1723 underwent UV radiation. Mutants’ primary screening was based on the enhanced Hollow Zone Diameter/ Colony Diameter Ration (H/C ratios) of the colonies in comparison with the wild strain on Xyla...

متن کامل

Comparative genomic, transcriptomic and secretomic profiling of Penicillium oxalicum HP7-1 and its cellulase and xylanase hyper-producing mutant EU2106, and identification of two novel regulatory genes of cellulase and xylanase gene expression

BACKGROUND The filamentous fungus Penicillium oxalicum is a potential alternative to Trichoderma reesei for industrial production of a complete cellulolytic enzyme system for a bio-refinery. Comparative omics approaches can support rational genetic engineering and/or breeding of filamentous fungi with improved cellulase production capacity. In this study, comparative genomic, transcriptomic and...

متن کامل

COMPARISON BETWEEN CONTINUOUS AND BATCH PROCESSING TO PRODUCE XYLANASE BY Penicillium canescens 10-10c

Penicillium canescens 10-10c strain was cultivated on barley straw hydrolysate as a soluble nutrient source and as inducer for xylanase production. Barley straw hydrolysate was obtained by treatment of barley straw with NaOH or hot water. In shake flask cultures, NaOH treatment was found to increase the biomass production, but was not accompanied by an increase in xylanase production. The best ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 38 2  شماره 

صفحات  -

تاریخ انتشار 2006